Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
BMC Biol ; 22(1): 12, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273307

RESUMO

BACKGROUND: Many viruses enter host cells by hijacking endosomal trafficking. CapZ, a canonical actin capping protein, participates in endosomal trafficking, yet its precise role in endocytosis and virus infection remains elusive. RESULTS: Here, we showed that CapZ was transiently associated with early endosomes (EEs) and was subsequently released from the matured EEs after the fusion of two EEs, which was facilitated by PI(3)P to PI(3,5)P2 conversion. Vacuolin-1 (a triazine compound) stabilized CapZ at EEs and thus blocked the transition of EEs to late endosomes (LEs). Likewise, artificially tethering CapZ to EEs via a rapamycin-induced protein-protein interaction system blocked the early-to-late endosome transition. Remarkably, CapZ knockout or artificially tethering CapZ to EEs via rapamycin significantly inhibited flaviviruses, e.g., Zika virus (ZIKV) and dengue virus (DENV), or beta-coronavirus, e.g., murine hepatitis virus (MHV), infection by preventing the escape of RNA genome from endocytic vesicles. CONCLUSIONS: These results indicate that the temporal association of CapZ with EEs facilitates early-to-late endosome transition (physiologically) and the release of the viral genome from endocytic vesicles (pathologically).


Assuntos
Fosfatos de Fosfatidilinositol , Infecção por Zika virus , Zika virus , Animais , Humanos , Camundongos , Endocitose/fisiologia , Endossomos/metabolismo , Sirolimo/farmacologia , Sirolimo/metabolismo , Vesículas Transportadoras , Internalização do Vírus , Infecção por Zika virus/metabolismo
2.
World J Clin Cases ; 11(15): 3522-3532, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37383897

RESUMO

BACKGROUND: Digital intraoral scanning, although developing rapidly, is rarely used in occlusal reconstruction. To compensate for the technical drawbacks of current occlusal reconstruction techniques, such as time consumption and high technical requirements, digital intraoral scanning can be used in clinics. This report aims to provide a way of selecting the most suitable maxillo-mandibular relationship (MMR) during recovery. CASE SUMMARY: A 68-year-old man with severely worn posterior teeth underwent occlusal reconstruction with fixed prosthesis using digital intraoral scanning. A series of digital models in different stages of treatment were obtained, subsequently compared, and selected using digital intraoral scanning together with traditional measurements, such as cone beam computed tomography, joint imaging, and clinical examination. Using digital intraoral scanning, the MMR in different stages of treatment was accurately recorded, which provided feasibility for deciding the best occlusal reconstruction treatment, made the treatment process easier, and improved patient satisfaction. CONCLUSION: This case report highlights the clarity, recordability, repeatability, and selectivity of digital intraoral scanning to replicate and transfer the MMR during occlusal reconstruction, expanding new perspectives for its design, fabrication, and postoperative evaluation.

3.
Cell Death Differ ; 29(10): 2070-2088, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35430615

RESUMO

The proper orientation of centrosome and spindle is essential for genome stability; however, the mechanism that governs these processes remains elusive. Here, we demonstrated that polo-like kinase 1 (Plk1), a key mitotic kinase, phosphorylates residue Thr76 in VCP/p97 (an AAA-ATPase), at the centrosome from prophase to anaphase. This phosphorylation process recruits VCP to the centrosome and in this way, it regulates centrosome orientation. VCP exhibits strong co-localization with Eg5 (a mitotic kinesin motor), at the mitotic spindle, and the dephosphorylation of Thr76 in VCP is required for the enrichment of both VCP and Eg5 at the spindle, thus ensuring proper spindle architecture and chromosome segregation. We also showed that the phosphatase, PTEN, is responsible for the dephosphorylation of Thr76 in VCP; when PTEN was knocked down, the normal spread of VCP from the centrosome to the spindle was abolished. Cryo-EM structures of VCPT76A and VCPT76E, which represent dephosphorylated and phosphorylated states of VCP, respectively, revealed that the Thr76 phosphorylation modulates VCP by altering the inter-domain and inter-subunit interactions, and ultimately the nucleotide-binding pocket conformation. Interestingly, the tumor growth in nude mice implanted with VCPT76A-reconstituted cancer cells was significantly slower when compared with those implanted with VCPWT-reconstituted cancer cells. Collectively, our findings demonstrate that the phosphorylation and dephosphorylation switch of VCP regulates the architecture of centrosome and spindle for faithful chromosome segregation.


Assuntos
Cinesinas , PTEN Fosfo-Hidrolase , Animais , Proteínas de Ciclo Celular/metabolismo , Centrossomo/metabolismo , Células HeLa , Humanos , Cinesinas/genética , Camundongos , Camundongos Nus , Mitose , Nucleotídeos/metabolismo , PTEN Fosfo-Hidrolase/genética , Fosforilação , Fuso Acromático/metabolismo , Proteína com Valosina/genética , Proteína com Valosina/metabolismo
4.
J Biol Inorg Chem ; 26(5): 551-568, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34240269

RESUMO

Endoplasmic reticulum stress (ER stress) plays a critical role in neuronal apoptosis along with the aggravation of Alzheimer's disease (AD). Nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcription factor that is involved in regulating ER stress in Alzheimer's disease (AD), therefore, this protein could be a promising therapeutic target for AD. Vanadium compounds, such as vanadyl acetylacetonate, sodium metavanadate and bis(maltolato)oxovanadium, are well-known as puissant PPARγ modulators. Thus, we are curious whether bis(ethylmaltolato)oxidovanadium (IV) (BEOV) can ameliorate ER stress and subsequent neuronal apoptosis by regulating PPARγ in AD models. To this end, we determined the effect of BEOV on behavioral performance, ER stress and neuronal apoptosis in the triple transgenic mouse AD model (3×Tg-AD). Our results showed that BEOV improved cognitive abilities and reduced the ER stress- and apoptosis-associated proteins in the brains of 3×Tg-AD mice. In vitro administration of BEOV in primary hippocampal neurons and N2asw cells achieved similar results in repressing ER stress. In addition, cotreatment with GW9662 (an antagonist of PPARγ) effectively blocked these neuroprotective effects of BEOV, which provided strong evidence that PPARγ-dependent signaling plays a key role in protecting against ER stress and neuronal apoptosis in AD. In conclusion, our data demonstrated that BEOV alleviated neuronal apoptosis triggered by ER stress by regulating PPARγ in a 3×Tg-AD model.


Assuntos
Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Compostos Organometálicos/farmacologia , PPAR gama/metabolismo , Doença de Alzheimer , Animais , Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fármacos Neuroprotetores/química , Compostos Organometálicos/química
5.
Histol Histopathol ; 36(9): 899-906, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33834451

RESUMO

BACKGROUND: Peri-miniscrew implant is a temporary assistant armamentarium for the treatment of severe malocclusion and complex tooth movement, the inflammation around it is the main reason for the failure of orthodontic treatment due to the implant loosening and falling out. Inflammation around the peri-miniscrew implant is associated with the release of pro-inflammatory cytokines. These pro-inflammatory cytokines, in turn, recruit immune cells (such as macrophages, dendritic cells, T cells, and B cells), which can produce and release inflammatory biomarkers, regulate the interaction between immune cells, periodontal ligament cells, osteoblasts, and so on. However, there is currently no effective clinical treatment plan to prevent inflammation around implants. PURPOSE: To investigate the potentially essential factors in the inflammatory response around the peri-miniscrew implant and explore the signaling pathways involved. METHODS: Here, we review the studies focused on inflammatory biomarkers (Interleukins, tumor necrosis factor-α (TNF-α), receptor activator of NF-κB ligand (RANKL), matrix metalloproteinases (MMPs), and cellular adhesion molecules (CAMs)) in peri-miniscrew implant crevicular fluid (PMICF), as well as inflammatory signaling pathways (Wnt5a, JNK, Erk1/2, NF-κBp65 and TAB/TAK) in periodontal cells from 1998 to 2020. RESULTS: A literature search revealed TLR-2, TLR-4, LOX-1, and BMPs are involved in regulating ILs (IL-1ß, IL-6, IL-8, and IL-17), TNF-α, RANKL, MMP-2, MMP-9 expression via JNK, Erk1/2, Wnt5a, NF-κBp65, OPN, and TAB/TAK signaling pathways. Among them, IL-1ß and IL-6 are the critical inflammation factors in the signaling pathways inducing the inflammatory reaction surrounding implants. Besides, CAM-1 was also regulated by MMP-9 and IL-17. CONCLUSION: There are considerable potential factors involving regulating inflammatory biomarkers on downstream signaling pathways in peri-minisrew implant crevicular fluid. CLINICAL SIGNIFICANCE: This review provides the substantiation of these cell factors and signaling pathways around peri-miniscrew implants, proposes more practical clinical therapeutic ideas and schemes for improving the stability and clinical efficacy of peri-miniscrew implants.


Assuntos
Parafusos Ósseos/efeitos adversos , Reação a Corpo Estranho/metabolismo , Líquido do Sulco Gengival/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Aparelhos Ortodônticos/efeitos adversos , Peri-Implantite/metabolismo , Técnicas de Movimentação Dentária/instrumentação , Animais , Reação a Corpo Estranho/imunologia , Reação a Corpo Estranho/patologia , Líquido do Sulco Gengival/imunologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Peri-Implantite/imunologia , Peri-Implantite/patologia , Transdução de Sinais , Resultado do Tratamento
6.
Aging (Albany NY) ; 13(6): 8628-8642, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33714955

RESUMO

Primary open angle glaucoma (POAG) is the leading cause of irreversible blindness. Dysfunction of the trabecular meshwork (TM), resulting in decreased outflow of aqueous humor and increased intraocular pressure (IOP), plays an important role in the pathogenesis of POAG. However, the underlying mechanisms still remain unclear. In this study, we demonstrated that the eIF2-α/ATF4/CHOP branch of unfolded protein response (UPR) was activated in human trabecular meshwork cells (HTMCs) upon tert-butyl hydroperoxide (TBHP) exposure. Inhibition of ATF4 ameliorated TBHP-induced apoptosis and inflammatory cytokine production, while ectopic expression of ATF4 increased the expression of endothelial leukocyte adhesion molecule (ELAM)-1 and IL-8 in HTMCs. Furthermore, we found that ATF4 inhibition reduced tunicamycin-induced caspase-3 activation, ROS production, ELAM-1 expression, and HTMCs phagocytosis impairment. By an in vivo study in mice, we showed that overexpression of ATF4 in the TM induced C/EBP homologous protein (CHOP) expression and TM cells apoptosis, contributing to inflammatory cytokine production, and probably IOP elevation. More importantly, upregulation of ATF4 and CHOP, and colocalization of ATF4 with ELAM-1 were found in the TM of POAG patients. These results suggest that ATF4 is a critical mediator of oxidative stress and ER stress-induced TM cell dysfunction and apoptosis in POAG.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Apoptose/fisiologia , Glaucoma de Ângulo Aberto/metabolismo , Glaucoma de Ângulo Aberto/patologia , Malha Trabecular/metabolismo , Malha Trabecular/patologia , Animais , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/fisiologia
7.
Aging (Albany NY) ; 12(13): 13437-13462, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32575075

RESUMO

Synaptic neurodegeneration of retinal ganglion cells (RGCs) is the earliest event in the pathogenesis of diabetic retinopathy. Our previous study proposed that impairment of mitochondrial trafficking by hyperphosphorylated tau is a potential contributor to RGCs synapse degeneration. However, other molecular mechanisms underlying mitochondrial defect in diabetic retinal neurodegeneration remain to be elucidated. Here, using a high-fat diet (HFD)-induced diabetic mouse model, we showed for the first time that downregulation of active ß-catenin due to abnormal GSK3ß activation caused synaptic neurodegeneration of RGCs by inhibiting ROS scavenging enzymes, thus triggering oxidative stress-driven mitochondrial impairment in HFD-induced diabetes. Rescue of ß-catenin via ectopic expression of ß-catenin with a recombinant adenoviral vector, or via GSK3ß inhibition by a targeted si-GSK3ß, through intravitreal administration, abrogated the oxidative stress-derived mitochondrial defect and synaptic neurodegeneration in diabetic RGCs. By contrast, ablation of ß-catenin by si-ß-catenin abolished the protective effect of GSK3ß inhibition on diabetic RGCs by suppression of antioxidant scavengers and augmentation of oxidative stress-driven mitochondrial lesion. Thus, our data identify ß-catenin as a part of an endogenous protective system in diabetic RGCs and a promising target to develop intervention strategies that protect RGCs from neurodegeneration at early onset of diabetic retinopathy.


Assuntos
Diabetes Mellitus Experimental/complicações , Retinopatia Diabética/patologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Mitocôndrias/patologia , Degeneração Retiniana/patologia , beta Catenina/metabolismo , Animais , Diabetes Mellitus Experimental/patologia , Retinopatia Diabética/etiologia , Dieta Hiperlipídica/efeitos adversos , Regulação para Baixo , Técnicas de Silenciamento de Genes , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Masculino , Camundongos , Microscopia Eletrônica de Transmissão , Estresse Oxidativo/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Retina/citologia , Retina/patologia , Retina/ultraestrutura , Degeneração Retiniana/etiologia , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/patologia , Sinapses/patologia , beta Catenina/genética
8.
Front Physiol ; 11: 294, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390857

RESUMO

Alzheimer's disease (AD) patients often exhibit perturbed circadian rhythm with fragmented sleep before disease onset. This study was designed to evaluate the effect of a 40-Hz light flicker on circadian rhythm in an AD mouse model (APP/PS1). Locomotor rhythms recordings were conducted to examine the circadian clock rhythm in APP/PS1 mice. Molecular biology analyses, including western blot and real-time qPCR assays, were conducted to assess the changes in circadian locomotor output cycles kaput (CLOCK), brain and muscle arnt-like protein-1 (BMAL1), and period 2 (PER2). In addition to determining the direct effect of a 40-Hz light flicker on hypothalamic central clock, whole-cell voltage-clamp electrophysiology was employed to record individual neurons of suprachiasmatic nucleus (SCN) sections. The results reported herein demonstrate that a 40-Hz light flicker relieves circadian rhythm disorders in APP/PS1 mice and returns the expression levels of key players in the central circadian clock, including Clock, Bmal1, and Per2, to baseline. Moreover, the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in SCN neurons is significantly lower in APP/PS1 mice than in the control, and the amplitude of sIPSCs is decreased. Exposure to a 40-Hz light flicker significantly increases the sIPSC frequency in SCN neurons of APP/PS1 mice, with little effect on the amplitude. However, the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) are both unaffected by a 40-Hz light flicker. The data suggest that a 40-Hz light flicker can ameliorate AD-associated circadian rhythm disorders, presenting a new type of therapeutic treatment for rhythm disorders caused by AD.

9.
Metallomics ; 12(4): 631, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32207509

RESUMO

Correction for 'Bis(ethylmaltolato)oxidovanadium(iv) inhibited the pathogenesis of Alzheimer's disease in triple transgenic model mice' by Zhijun He et al., Metallomics, 2020, DOI: 10.1039/c9mt00271e.

10.
Front Mol Neurosci ; 13: 21, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210760

RESUMO

Alzheimer's disease (AD) is a widely distributed neurodegenerative disease characterized clinically by cognitive deficits and pathologically by formation of amyloid-ß (Aß) plaque and neurofibrillary tangles (NFTs) in the brain. Vanadium is a biological trace element that has a function to mimic insulin for diabetes. Bis(ethylmaltolato) oxidovanadium (IV) (BEOV) has been reported to have a hypoglycemic property, but its effect on AD remains unclear. In this study, BEOV was supplemented at doses of 0.2 and 1.0 mmol/L to the AD model mice APPSwe/PS1dE9 for 3 months. The results showed that BEOV substantially ameliorated glucose metabolic disorder as well as synaptic and behavioral deficits of the AD mice. Further investigation revealed that BEOV significantly reduced Aß generation by increasing the expression of peroxisome proliferator-activated receptor gamma and insulin-degrading enzyme and by decreasing ß-secretase 1 in the hippocampus and cortex of AD mice. BEOV also reduced tau hyperphosphorylation by inhibiting protein tyrosine phosphatase-1B and regulating the pathway of insulin receptor/insulin receptor substrate-1/protein kinase B/glycogen synthase kinase 3 beta. Furthermore, BEOV could enhance autophagolysosomal fusion and restore autophagic flux to increase the clearance of Aß deposits and phosphorylated tau in the brains of AD mice. Collectively, the present study provides solid data for revealing the function and mechanism of BEOV on AD pathology.

11.
J Cell Mol Med ; 24(6): 3469-3480, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32052937

RESUMO

Primary open-angle glaucoma (POAG) is the second leading cause of irreversible blindness worldwide. Increased endothelin-1 (ET-1) has been observed in aqueous humour (AH) of POAG patients, resulting in an increase in the out-flow resistance of the AH. However, the underlining mechanisms remain elusive. Using established in vivo and in vitro POAG models, we demonstrated that water channel Aquaporin 1 (AQP1) is down-regulated in trabecular meshwork (TM) cells upon ET-1 exposure, which causes a series of glaucomatous changes, including actin fibre reorganization, collagen production, extracellular matrix deposition and contractility alteration of TM cells. Ectopic expression of AQP1 can reverse ET-1-induced TM tissue remodelling, which requires the presence of ß-catenin. More importantly, we found that ET-1-induced AQP1 suppression is mediated by ATF4, a transcription factor of the unfolded protein response, which binds to the promoter of AQP1 and negatively regulates AQP1 transcription. Thus, we discovered a novel function of ATF4 in controlling the process of TM remodelling in ET-1-induced POAG through transcription suppression of AQP1. Our findings also detail a novel pathological mechanism and a potential therapeutic target for POAG.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Aquaporina 1/metabolismo , Endotelinas/metabolismo , Glaucoma de Ângulo Aberto/patologia , Malha Trabecular/metabolismo , Animais , Humor Aquoso/química , Cegueira/patologia , Linhagem Celular , Modelos Animais de Doenças , Regulação para Baixo , Regulação da Expressão Gênica/genética , Humanos , Coelhos , Transcrição Gênica/genética
12.
Metallomics ; 12(4): 474-490, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31970356

RESUMO

Vanadium compounds have been reported to mimic the anti-diabetes effects of insulin on rodent models, but their effects on Alzheimer's disease (AD) have rarely been explored. In this paper, 9-month-old triple transgenic AD model mice (3×Tg-AD) received bis(ethylmaltolato)oxidovanadium(iv) (BEOV) at doses of 0.2 mmol L-1 (68.4 µg mL-1) and 1.0 mmol L-1 (342 µg mL-1) for 3 months. BEOV at both doses was found to improve contextual memory and spatial learning in AD mice. It also improved glucose metabolism and protected neuronal synapses in the AD brain, as evidenced respectively by 18F-labeled fluoro-deoxyglucose positron emission tomography (18F-FDG-PET) scanning and by transmission electron microscopy. Inhibitory effects of BEOV on ß-amyloid (Aß) plaques and neuronal impairment in the cortex and hippocampus of fluorescent AD mice were visualized three-dimensionally by applying optical clearing technology to brain slices before confocal laser scanning microscopy. Western blot analysis semi-quantitatively revealed the altered levels of Aß42 in the brains of wildtype, AD, and AD treated with 0.2 and 1.0 mmol L-1 BEOV mice (70.3%, 100%, 83.2% and 56.8% in the hippocampus; 82.4%, 100%, 66.9% and 42% in the cortex, respectively). The mechanism study showed that BEOV increased the expression of peroxisome proliferator-activated receptor γ (PPARγ) (140%, 100%, 142% and 160% in the hippocampus; 167%, 100%, 124% and 133% in the cortex) to inactivate the JAK2/STAT3/SOCS-1 pathway and to block the amyloidogenesis cascade, thus attenuating Aß-induced insulin resistance in AD models. BEOV also reduced protein tyrosine phosphatase 1B (PTP1B) expression (74.8%, 100%, 76.5% and 53.8% in the hippocampus; 71.8%, 100%, 94.2% and 81.8% in cortex) to promote insulin sensitivity and to stimulate the PI3K/Akt/GSK3ß pathway, subsequently reducing tau hyperphosphorylation (phosphorylated tau396 levels were 51.1%, 100%, 56.1% and 50.2% in the hippocampus; 22.2%, 100%, 36.1%, and 24% in the cortex). Our results suggested that BEOV reduced the pathological hallmarks of AD by targeting the pathways of PPARγ and PTP1B in 3×Tg AD mice.


Assuntos
Doença de Alzheimer/prevenção & controle , Modelos Animais de Doenças , Compostos Organometálicos/administração & dosagem , Placa Amiloide/tratamento farmacológico , Vanádio/administração & dosagem , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Células HEK293 , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Memória/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Compostos Organometálicos/química , Fosforilação/efeitos dos fármacos , Placa Amiloide/metabolismo , Placa Amiloide/ultraestrutura , Tomografia por Emissão de Pósitrons/métodos , Aprendizagem Espacial/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Vanádio/química , Proteínas tau/metabolismo
13.
Mol Neurodegener ; 13(1): 62, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30466464

RESUMO

BACKGROUND: Although diabetic retinopathy (DR) has long been considered as a microvascular disorder, mounting evidence suggests that diabetic retinal neurodegeneration, in particular synaptic loss and dysfunction of retinal ganglion cells (RGCs) may precede retinal microvascular changes. Key molecules involved in this process remain poorly defined. The microtubule-associated protein tau is a critical mediator of neurotoxicity in Alzheimer's disease (AD) and other neurodegenerative diseases. However, the effect of tau, if any, in the context of diabetes-induced retinal neurodegeneration has yet to be ascertained. Here, we investigate the changes and putative roles of endogeneous tau in diabetic retinal neurodegeneration. METHODS: To this aim, we combine clinically used electrophysiological techniques, i.e. pattern electroretinogram and visual evoked potential, and molecular analyses in a well characterized high-fat diet (HFD)-induced mouse diabetes model in vivo and primary retinal ganglion cells (RGCs) in vitro. RESULTS: We demonstrate for the first time that tau hyperphosphorylation via GSK3ß activation causes vision deficits and synapse loss of RGCs in HFD-induced DR, which precedes retinal microvasculopathy and RGCs apoptosis. Moreover, intravitreal administration of an siRNA targeting to tau or a specific inhibitor of GSK3ß reverses synapse loss and restores visual function of RGCs by attenuating tau hyperphosphorylation within a certain time frame of DR. The cellular mechanisms by which hyperphosphorylated tau induces synapse loss of RGCs upon glucolipotoxicity include i) destabilizing microtubule tracks and impairing microtubule-dependent synaptic targeting of cargoes such as mRNA and mitochondria; ii) disrupting synaptic energy production through mitochondria in a GSK3ß-dependent manner. CONCLUSIONS: Our study proposes mild retinal tauopathy as a new pathophysiological model for DR and tau as a novel therapeutic target to counter diabetic RGCs neurodegeneration occurring before retinal vasculature abnormalities.


Assuntos
Estriol/análogos & derivados , Glicogênio Sintase Quinase 3 beta/metabolismo , Mitocôndrias/metabolismo , Fosforilação/fisiologia , Tauopatias/metabolismo , Doença de Alzheimer/metabolismo , Animais , Modelos Animais de Doenças , Estriol/metabolismo , Potenciais Evocados Visuais/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Proteínas tau/metabolismo
14.
Exp Neurol ; 297: 36-49, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28711506

RESUMO

Accumulating evidences show that selenium dietary intake is inversely associated with the mortality of Alzheimer's disease (AD). Sodium selenate has been reported to reduce neurofibrillary tangles (NFT) in the tauopathic mouse models, but its effects on the Wnt/ß-catenin signaling pathway and APP processing remain unknown during AD formation. In this paper, triple transgenic AD mice (3×Tg-AD) had been treated with sodium selenate in drinking water for 10month before the detection of hippocampal pathology. Increased Aß generation, tau hyperphosphorylation and neuronal apoptosis were found in the hippocampus of AD model mouse. Down-regulation of Wnt/ß-catenin signaling is closely associated with the alteration of AD pathology. Treatment with sodium selenate significantly promoted the activity of protein phosphatases of type 2A (PP2A) and repressed the hallmarks of AD. Activation of PP2A by sodium selenate could increase active ß-catenin level and inhibit GSK3ß activity in the hippocampal tissue and primarily cultured neurons of AD model mouse, leading to activation of Wnt/ß-catenin signaling and transactivation of target genes, including positively-regulated genes c-myc, survivin, TXNRD2 and negatively-regulated gene BACE1. Meanwhile, APP phosphorylation was also reduced on the Thr668 residue after selenate treatment, causing the decreases of APP cleavage and Aß generation. These findings reveal that the Wnt/ß-catenin signaling is a potential target for prevention of AD and sodium selenate may be developed as a new drug for AD treatment.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Ácido Selênico/uso terapêutico , Via de Sinalização Wnt/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/antagonistas & inibidores , Animais , Animais Recém-Nascidos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ácido Selênico/farmacologia , Via de Sinalização Wnt/fisiologia , beta Catenina/antagonistas & inibidores , beta Catenina/metabolismo
16.
Sci Rep ; 6: 39290, 2016 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-28008954

RESUMO

Many studies have shown that imbalance of mineral metabolism may play an important role in Alzheimer's disease (AD) progression. It was recently reported that selenium could reverse memory deficits in AD mouse model. We carried out multi-time-point ionome analysis to investigate the interactions among 15 elements in the brain by using a triple-transgenic mouse model of AD with/without high-dose sodium selenate supplementation. Except selenium, the majority of significantly changed elements showed a reduced level after 6-month selenate supplementation, especially iron whose levels were completely reversed to normal state at almost all examined time points. We then built the elemental correlation network for each time point. Significant and specific elemental correlations and correlation changes were identified, implying a highly complex and dynamic crosstalk between selenium and other elements during long-term supplementation with selenate. Finally, we measured the activities of two important anti-oxidative selenoenzymes, glutathione peroxidase and thioredoxin reductase, and found that they were remarkably increased in the cerebrum of selenate-treated mice, suggesting that selenoenzyme-mediated protection against oxidative stress might also be involved in the therapeutic effect of selenate in AD. Overall, this study should contribute to our understanding of the mechanism related to the potential use of selenate in AD treatment.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Íons/análise , Minerais/análise , Ácido Selênico/administração & dosagem , Animais , Antioxidantes/análise , Modelos Animais de Doenças , Glutationa Peroxidase/análise , Camundongos Transgênicos , Tiorredoxina Dissulfeto Redutase/análise
17.
J Agric Food Chem ; 64(7): 1528-39, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26832452

RESUMO

Increased apoptosis of retinal ganglion cells (RGCs) contributes to the gradual loss of retinal neurons at the early phase of diabetic retinopathy (DR). There is an urgent need to search for drugs with neuroprotective effects against apoptosis of RGCs for the early treatment of DR. This study aimed to investigate the neuroprotective effects of saponins extracted from Panax notoginseng, a traditional Chinese medicine, on apoptosis of RGCs stimulated by palmitate, a metabolic factor for the development of diabetes and its complications, and to explore the potential molecular mechanism. We showed that crude saponins of P. notoginseng (CSPN) inhibited the increased apoptosis and loss of postsynaptic protein PSD-95 by palmitate in staurosporine-differentiated RGC-5 cells. Moreover, CSPN suppressed palmitate-induced reactive oxygen species generation and endoplasmic reticulum stress-associated eIF2α/ATF4/CHOP and caspase 12 pathways. Thus, our findings address the potential therapeutic significance of CSPN for the early stage of DR.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Palmitatos/efeitos adversos , Panax notoginseng/química , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/efeitos dos fármacos , Saponinas/farmacologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Associadas SAP90-PSD95 , Estaurosporina/farmacologia
18.
J Mol Endocrinol ; 55(3): 245-62, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26386043

RESUMO

Activation of apoptosis in cardiomyocytes by saturated palmitic acids contributes to cardiac dysfunction in diabetic cardiomyopathy. Beta-catenin (b-catenin) is a transcriptional regulator of several genes involved in survival/anti-apoptosis. However, its role in palmitate-induced cardiomyocyte apoptosis remains unclear. Glucagon-like peptide 1 (GLP1) has been shown to exhibit potential cardioprotective properties. This study was designed to evaluate the role of b-catenin signalling in palmitate-induced cardiomyocyte apoptosis and the molecular mechanism underlying the protective effects of GLP1 on palmitate-stressed cardiomyocytes. Exposure of neonatal rat cardiomyocytes to palmitate increased the fatty acid transporter CD36-mediated intracellular lipid accumulation and cardiomyocyte apoptosis, decreased accumulation and nuclear translocation of active b-catenin, and reduced expression of b-catenin target protein survivin and BCL2. These detrimental effects of palmitate were significantly attenuated by GLP1 co-treatment. However, the anti-apoptotic effects of GLP1 were markedly abolished when b-catenin was silenced with a specific short hairpin RNA. Furthermore, analysis of the upstream molecules and mechanisms responsible for GLP1-associated cardiac protection revealed that GLP1 restored the decreased phosphorylation of protein kinase B (Akt) and glycogen synthase kinase-3b (GSK3b) in palmitate-stimulated cardiomyocytes. In contrast, inhibition of Akt with an Akt-specific inhibitor MK2206 or blockade of GLP1 receptor (GLP1R) with a competitive antagonist exendin-(9-39) significantly abrogated the GLP1-mediated activation of GSK3b/b-catenin signalling, leading to increased apoptosis in palmitate-stressed cardiomyocytes. Collectively, our results demonstrated for the first time that the attenuated b-catenin signalling may contribute to palmitate-induced cardiomyocyte apoptosis, while GLP1 can protect cardiomyocytes from palmitate-induced apoptosis through activation of GLP1R/Akt/GSK3b-mediated b-catenin signalling.


Assuntos
Apoptose/efeitos dos fármacos , Cardiotônicos/farmacologia , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Quinases da Glicogênio Sintase/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , beta Catenina/metabolismo , Animais , Apoptose/genética , Antígenos CD36/metabolismo , Sobrevivência Celular/genética , Técnicas de Silenciamento de Genes , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Metabolismo dos Lipídeos , Palmitatos/farmacologia , RNA Interferente Pequeno/genética , Ratos , beta Catenina/genética
19.
Nanoscale ; 6(2): 860-6, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24270237

RESUMO

For the first time, we demonstrate the use of a microemulsion reaction to synthesize different nanostructures of LiCoO2 cathode material. By varying the annealing temperature and time, porous nanowires and nanoparticles of LiCoO2 are obtained. The electrochemical performances of these different nanostructures obtained under the respective annealing conditions are evaluated. It is shown that nanoparticles formed under the annealing condition of 700 °C, 1.5 h perform the best, delivering an initial capacity of around 135 mA h g(-1), which is close to the theoretical capacity of LiCoO2, 140 mA h g(-1). They also exhibit a capacity retention of around 93% by 100 cycles at 0.1 C. Comparisons are made between our LiCoO2 material obtained under different annealing conditions and those in the literature.

20.
PeerJ ; 1: e202, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24255816

RESUMO

Background. The selenocysteine(Sec)-containing proteins, selenoproteins, are an important group of proteins present in all three kingdoms of life. Although the selenoproteomes of many organisms have been analyzed, systematic studies on selenoproteins in platyhelminthes are still lacking. Moreover, comparison of selenoproteomes between free-living and parasitic animals is rarely studied. Results. In this study, three representative organisms (Schmidtea mediterranea, Schistosoma japonicum and Taenia solium) were selected for comparative analysis of selenoproteomes in Platyhelminthes. Using a SelGenAmic-based selenoprotein prediction algorithm, a total of 37 selenoprotein genes were identified in these organisms. The size of selenoproteomes and selenoprotein families were found to be associated with different lifestyles: free-living organisms have larger selenoproteome whereas parasitic lifestyle corresponds to reduced selenoproteomes. Five selenoproteins, SelT, Sel15, GPx, SPS2 and TR, were found to be present in all examined platyhelminthes as well as almost all sequenced animals, suggesting their essential role in metazoans. Finally, a new splicing form of SelW that lacked the first exon was found to be present in S. japonicum. Conclusions. Our data provide a first glance into the selenoproteomes of organisms in the phylum Platyhelminthes and may help understand function and evolutionary dynamics of selenium utilization in diversified metazoans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA